FLOW OF NANOPARTICLES IN AND AROUND ROAD VEHICLES

DR PRASHANT KUMAR

SENIOR LECTURER DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

Group member of the:

EnFlo – ENVIRONMENTAL FLOW RESEARCH CENTRE

CEHE – **C**ENTRE **F**OR **E**NVIRONMENTAL **A**ND **H**EALTH **E**NGINEERING

CAMBRIDGE PARTICLE MEETING, 24 MAY 2013

OUTLINE

BACKGROUND

Various spatial scales

- Nanoparticles; Origin; Importance?
- Why are they distinct from other pollutants?
- **E**MISSION AND **D**ISPERSION OF **A**TMOSPHERIC **N**ANOPARTICLES

Behind your car

Inside your car

Roadside/street canyons

Within cities

Roadside/Street canyons ~10⁴-10⁵ cm⁻³

On-road (within vehicles) lower end of ~10⁵ cm⁻³

Tailpipe ~10⁶-10⁷ cm⁻³

SUMMARY AND CONCLUSIONS

Cities ~ $10^3 - 10^4$ cm⁻³

CITIES, MEGACITIES & PARTICULATE AIR POLLUTION

Taken from: Kumar, P., Jain, S., Gurjar, B.R., Sharma, P., Khare, M., Morawska, L., Britter, R., 2013. Can a "Blue Sky" Return to Indian Megacities? Atmospheric Environment 71, 1-4.

BACKGROUND

Definition of nanoparticles?

- Any particle in nanosize range, <10 nm, <50 nm, <100 nm?</p>
- BIS and EU definition for nanoparticles any dimension of size between 1 and 100 nm; but this is for MNPs!
- ▶ By analogy of PNCs in urban environments, over 99% of total PNCs <300 nm

How do they originate?

- Combustion of fossil fuels (road vehicles dominant source)
- Other sources (e.g. power plants, ship emissions, aircrafts, non-exhaust sources)
- Formation through gas-to-particle conversion, direct emissions, secondary formation, and mechanical attrition

Why Important?

- ► Adverse health effects, role in visibility impairment and global climate change
- Number based Euro-5& 6 emission standards ambient air quality standards?
- Need to understand their dispersion behaviour in various settings for developing modelling tools
- Road sides, urban street canyons are pollution 'hot spots' because of limited dispersion due to surrounding built-up environment

Taken from: **Kumar, P.,** Robins, A., Vardoulakis, S., Britter, R., 2010. A review of the characteristics of atmospheric urban nanoparticles and the prospects of developing regulatory control. <u>Atmospheric Environment</u> 44, 5035-5052. [Most downloaded article]

Appropriate treatment of particle dynamics in dispersion model at various urban scales is key for accurate prediction

Symbols +, – and 0 denotes gain, loss and no effect of the transformation processes on particle number concentrations, respectively. Acronyms I, V and n stand for important, very important and no important (can be ignored), respectively.

Transformation processes	Effects on concentrations		Vehicle wake		Street canyons	Neighb– ourhood	City	Tunnel
	number	volume	near	far				
Emissions	+	+	V	V	V	V	v	v
Nucleation	+	+	V	I.	I*	I*	I	I
Dilution	+/-	+/-	V	V	V	V	v	v
Coagulation	-	0	n	n	n ^{\$}	n ^{\$}	I	v
Condensation	0	+	V	I	n ^{\$}	n ^{\$}	I	I.
Evaporation	0/-	-	I	V	I	I	n	I
Dry deposition	-	-	V	V	I	I	I	v
Wet deposition	-	-	n	n	n	n	I	n

*Important near the source (i.e. vehicle tail pipe); probably not important later though will depend on the background concentrations, dilution and other meteorological parameters (i.e. wind speed, direction, temperature, solar radiation). ^{\$}Depending on the background concentrations, fresh emissions and meteorological parameters.

Taken from: Kumar, P., Ketzel, M., Vardoulakis, S., Britter, R., 2011. Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environments. *Journal of Aerosol Science* 42, 580-603. [*Most cited and downloaded paper*]

EPSRC Pioneering research and skills

What happens to nanoparticles behind your car?

*Carpentieri, M., **Kumar, P.,** 2011. Ground–fixed and on–board measurements of nanoparticles in the wake of a moving vehicle. <u>Atmospheric Environment</u> 45, 5837-5852.

VEHICLE WAKE (FIELD & WIND TUNNEL EXPERIMENTS)

Work from the EPSRC first grant: Carpentieri, M., **Kumar, P.,** Robins, A., 2012. Wind tunnel measurements for dispersion modelling in vehicle wakes. Atmospheric Environment 62, 9-25.

VEHICLE WAKE

Taken from: Carpentieri, M., **Kumar, P.,** Robins, A., 2010. An overview of experimental results and dispersion modelling of nanoparticles in the wake of a moving vehicle. *Environmental Pollution* 159, 685-693.

EPSRC

Pioneering research and skills

VEHICLE WAKE (ground-fixed and on-board measurements)*

- Ground-fixed point (16 Oct 2010), on-board (13 November 2010 and 29 January 2011)
- 2 different ground–fixed heights: 10 cm and 25 cm from the ground
- Car passes at different speed: approximately 20, 30, 40 and 50 km h⁻¹
- Each test repeated several times for the purpose of data reliability

*Taken from: Carpentieri, M., Kumar, P., 2011. Ground–fixed and on–board measurements of nanoparticles in the wake of a moving vehicle. <u>Atmospheric Environment</u> 45, 5837-5852.

VEHICLE WAKE (ground–fixed at 0.10 m)

Pioneering research and skills

VEHICLE WAKE (ground–fixed)

EPSRC

and skills

t=0 s; when PNCs start to
increase significantly over
the background – first sign
of PNC detection

UNIVERSITY OF

SURRE

Rapid building of PNCs within 1 s

Followed by a slower decay towards background

Decay period increased with vehicle speed, mainly due to higher emissions at higher speeds

All the effect of emissions measured lasted within 5–15 s.

Example case: Normalised size distributions during (a) pre–evolution, (b) evolution 1, (c) evolution 2, and (d) post–evolution for the experimental case: $H = 0.10 \text{ m}, \text{ V} = 20 \text{ km h}^{-1}$, Run 01.

- (a) Pre-evolution stage: site background; dominated by nucleation mode; peak 10-12 nm
- (b) Evolution (1): Most transformation occurred; rapid change in PNDs showing integrated influence of nucleation and dilution
- (c) Evolution (2): seems dilution only effects; PNDs moving up and down like (a) and (d); both evolution sub-stages shows distinct transformation behaviour
- (d) Post-evolution: Returned back similar to (a)

Data points in the line of tailpipe at different 0.10 and 0.50 m above the road level

- P_a (x =0.45m, y= -0.45m, z= 0.10m) more affected by car speeds showing increasing PNDs and a fresh nucleation mode
- P_d (x =0.45m, y= -0.45m, z= 0.50m); PNDs quite similar irrespective of any speed; nucleation mode not evident
- Similar shape, as for P_d, was seen for points in the centre and at far end of tailpipe, showing a missing nucleation mode
- Similar to P_a, a less pronounced nucleation mode was observed at P_b (closer to tailpipe)

Example case: PNDs for on–board measurements at P_a and P_d .

- Combined analysis showed two separate groups experiencing different transformation processes just adjacent to the back of a moving car
 - New particles (with nucleation mode), which are freshly emitted and come directly from tailpipe in recirculation longitudinal vortex at the side of tailpipe, and
 - Relatively aged particles (without nucleation mode), which are entrained within the recirculation (flow reversal) wake and reside for a longer time

Other zones further away from car showed a mixture of both patterns

PNCs (# cm⁻³) measured at x=0.45 m. Size of each bubble corresponds to magnitude of PNCs at that point.

- Size of bubble expanding with the increased vehicle speed, verifying the fact that PNC emissions increases with vehicle speed.
- As expected, concentrations were higher in x-direction close to tailpipe which are being recirculated towards the centre points resulting in larger concentrations than those on the extreme far end from tailpipe

Objectives

Determining detailed flow and dispersion characteristics in the wake of moving vehicle, mimicking the field experiments, for developing fast parameterisation mathematical model to be used with operational nanoparticle dispersion model

Methodology

- Experiments carried out in the EnFlo (Environmental Flow Research Centre) wind tunnel. Reduced scale models (1:20 and 1:5) of the diesel car used mimicked our field experiments
- For reducing the unrealistic effects of a growing boundary layer at the wind tunnel surface, the models were placed at the leading edge of a false floor (i.e. 0.23 m.... above the tunnel floor)

*Carpentieri, M., **Kumar, P.,** Robins, A., 2012. Wind tunnel measurements for dispersion modelling of vehicle wakes. *Atmospheric Environment* 62, 9-25.

NIVERSITY OF

1 of 4

VEHICLE WAKE (WIND TUNNEL EXPERIMENTS*)

LDA measurements on the 1:5 model, vertical planes. Y = 0 in the centreline of the vehicles & Y=-0.33 is approximately in line with the tailpipe.

Taken from: Carpentieri, M., Kumar, P., Robins, A., 2012. Wind tunnel measurements for dispersion modelling of vehicle wakes. Atmospheric Environment 62, 9-25.

What happens inside car cabins?

- *Joodatnia, P., Kumar, P., Robins, A., 2013. The behaviour of traffic produced nanoparticles in a car cabin and resulting exposure rates. *Atmospheric Environment* 65, 40--51.
- *Joodatnia, P., Kumar, P., Robins, A., 2013. Fast response sequential measurements and modelling of nanoparticles inside and outside a car cabin. *Atmospheric Environment* 71, 364-375.

INSIDE CAR CABIN

DMS50 on-board

Route: University to City Centre

Passenger exposure to nanoparticulate pollution inside car cabin with A/C ON & Windows closed

Aim: Determining particle dynamics inside the car cabins

Measurement Point inside the Car Cabin

INSIDE CAR CABIN

- When the car was behind a bus, as seen in next slide
- Greater fresh exhaust emissions (i.e. 5-30 nm)

In any case, negligible particles by number above 300 nm

PNCs inside the car cabin during a typical car journey in a typical UK town

Driving on a Road just outside Guildford Town with no Traffic ahead

INSIDE CAR CABIN

INSIDE CAR CABIN

How does PNCs compare with other studies?

*Joodatnia, P., Kumar, P., Robins, A., 2013. The behaviour of traffic produced nanoparticles in a car cabin and resulting exposure rates. Atmospheric Environment 65, 40-51.

INSIDE CAR CABIN (MODELLING)

INSIDE CAR CABIN (MODELLING)*

$$N_{\rm ci}(t_{\rm n+1}) = N_{\rm oi}(t_n) \times (I/O)_i + (N_{ci}(t_{\rm n}) - N_{oi}(t_{\rm n}) \times (I/O)_i) \times e^{-A_E(\Delta t)}$$

I/O = 0.72 (from experiments); A_E (=7.7x10² m³ s⁻¹; air exchange rate, estimated using gas experiment; inflow rate into vehicle 4.2x10² m³ s⁻¹)

*Joodatnia, P., Kumar, P., Robins, A., 2013. Fast response sequential measurements and modelling of nanoparticles inside and outside a car cabin. *Atmospheric Environment* 71, 364-375.

- Pseudo-simultaneous measurements at all 4 seats in car, and inside-outside taken.
- Identical PNCs at all 4 seats indicated car cabin air is well-mixed.
- Ratio of in–cabin to outside PNCs is not uniform for different particle sizes.
- Time scale analysis highlights dilution as a dominant process.
- A proposed semi-empirical model predicted inside cabin PNC adequately well

FUTURE DIRECTIONS

- Dispersion model for the near wake; model linking wake and cabin
- Vegetation barriers

Non-vehicle sources (buildings activities* & solid waste landfills)

*Kumar, P., Mulheron, M., Som, C., 2012. Release of ultrafine particles from three simulated building processes. Journal of Nanoparticle Research 14, 771, doi: 10.1007/s11051-012-0771-2.

INTERESTING FACTS AND CHALLENGES!

ATMOSPHERIC

Atmospheric Environment 67 (2013) 252-277

Contents lists available at SciVerse ScienceDirect

Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv

Review

Nanoparticle emissions from 11 non-vehicle exhaust sources – A review

Prashant Kumar^{a,b,*}, Liisa Pirjola^{c,d}, Matthias Ketzel^e, Roy M. Harrison^{f,g}

^a Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (FEPS), University of Surrey, Guildford GU2 7XH, United Kingdom

^bEnvironmental Flow (EnFlo) Research Centre, FEPS, University of Surrey, Guildford GU2 7XH, United Kingdom

^c Department of Physics, University of Helsinki, FI-00064 Helsinki, Finland

^d Department of Technology, Metropolia University of Applied Sciences, FI-00180 Helsinki, Finland

^e Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark

^f Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

^g Department of Environmental Sciences/Center of Excellence in Environmental Studies, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia

[Most downloaded article]

- **EPSRC (EP/H026290/1; DTA grant), KISR & UoS instrument grants**
- Past and current group members (Dr. Matteo Carpentieri; Pouyan Joodatnia; Abdullah Al-Dabbous; Farhad Azarmi) and EnFlo staff members (Alistair, Allan & Paul)

• Collaborators & co-authors:

- Prof. Alan Robins (UoS, UK);
- Prof. Roy Harrison (UoB, UK);
- Dr. Paul Fennell (*Imperial College, London*);
- Dr. Matthias Ketzel & Dr. Ruwim Berkowicz (NERI, Denmark);
- Dr. Jonathon Symonds (Cambustion Instruments, Cambridge);
- Dr. BR Gurjar (IIT Roorkee);
- Prof. Lidia Morawska (QUT, Australia);
- Prof. Liisa Pirjola (UoH, Finland);
- Profs. Mukesh Khare and Prateek Sharma; Dr. Suresh Jain (India);
- Prof. Rex Britter (*MIT, USA*)

THANK YOU

CONTACT

DR. PRASHANT KUMAR

Email: p.kumar@surrey.ac.uk

Webpage: http://www2.surrey.ac.uk/cee/people/prashant_kumar/